Archives

  • 2018-07
  • 2018-10
  • 2018-11
  • 2019-04
  • 2019-05
  • 2019-06
  • 2019-07
  • 2019-08
  • 2019-09
  • 2019-10
  • 2019-11
  • 2019-12
  • 2020-01
  • 2020-02
  • 2020-03
  • 2020-04
  • 2020-05
  • 2020-06
  • 2020-07
  • 2020-08
  • 2020-09
  • 2020-10
  • 2020-11
  • 2020-12
  • 2021-01
  • 2021-02
  • 2021-03
  • 2021-04
  • 2021-05
  • 2021-06
  • 2021-07
  • 2021-08
  • 2021-09
  • 2021-10
  • 2021-11
  • 2021-12
  • 2022-01
  • 2022-02
  • 2022-03
  • 2022-04
  • 2022-05
  • 2022-06
  • 2022-07
  • 2022-08
  • 2022-09
  • 2022-10
  • 2022-11
  • 2022-12
  • 2023-01
  • 2023-02
  • 2023-03
  • 2023-04
  • 2023-05
  • 2023-06
  • 2023-08
  • 2023-09
  • 2023-10
  • 2023-11
  • 2023-12
  • 2024-01
  • 2024-02
  • 2024-03
  • 2024-04
  • 2024-05
  • Human ether a go go related gene HERG encodes

    2019-04-19

    Human-ether-a-go-go-related gene (HERG) encodes the α-subunit of rapidly-activating delayed-rectifier potassium EPI-001 that generate IKr. This outward potassium current is elicited during the plateau phase of action potentials and is required for repolarization [4]. After being translated in the endoplasmic reticulum (ER), the HERG protein is transported to the Golgi apparatus where it undergoes glycosylation [5]. This modification transforms the protein from the premature form into the mature form. Eventually, HERG is transported to the plasma membrane [6]. LQTS type 2 (LQT2) is caused by mutations in HERG [7]. In most LQT2 cases, the mutations destabilize the HERG protein and impair its maturation and intracellular transport [8]. Sorted by the ER quality control system, the mutant HERG protein is reverse-transported from the ER to the cytoplasm where it is degraded by the ubiquitin–proteasome system, resulting in reduced HERG channel currents and impaired repolarization of ventricular action potentials [9]. It has been reported that heat shock (HS) assists both in the folding of newly synthesized proteins and the refolding of denatured proteins [10]. Molecular chaperones such as heat shock proteins (HSPs), including Hsp90 and Hsp70, induced by HS play an important role in the maturation of HERG [11,12]. In mammals, the heat shock factor (HSF) family consists of 4 subtypes and increases in response to HS to activate the transcription of molecular chaperones.
    Materials and methods
    Results
    Discussion The novel HERG mutation A78T, found in a patient with LQT2, was located at the N-terminus of HERG proteins. The A78T-HERG protein failed to mature and was expressed as a highly ubiquitinated 135-kDa immature protein. Since ubiquitination of the protein to be degraded by the proteasome is known to occur in the core-glycosylated immature form at the ER [11,12], this finding indicates the impaired stability of A78T-HERG proteins to be degraded via the ubiquitin proteasome system. Protein maturation is facilitated by the accumulation of immature proteins EPI-001 (mass effect) as well as by posttranslational modifications including glycosylation. In the present study, MG132 increased the expression of the 135-kDa immature form of A78T-HERG, but not that of the 155-kDa mature form, suggesting that the accumulation of immature A78T-HERG did not facilitate its maturation. We previously demonstrated that MG132 increased the expression of the mature form of Kv1.5, a voltage-gated potassium channel, indicating that accumulated immature wild-type Kv1.5 protein could be converted to its mature form as a result of the mass effect [14]. Since a substantial portion of Kv1.5 is degraded via the ubiquitin–proteasome system, proteasomal inhibition results in the accumulation of a large amount of immature Kv1.5, facilitating its maturation as a mass effect. In contrast, during the synthesis of WT-HERG, most of the core-glycosylated immature protein is converted to the fully-glycosylated mature form [6]. Thus, accumulation of the immature form of HERG protein in a setting of proteasomal inhibition is lower than that of Kv1.5. The failure of MG132 to increase the expression of mature A78T-HERG suggests that accumulation of immature A78T-HERG is not sufficient to exert a mass effect, while accumulation of immature A78T-HERG may not increase its mature form because of severe dysfunction of its maturation process. Since the type and position of a mutation in the gene influence protein structure and stability [13], the A78T mutation may destabilize the HERG protein because of an alteration in the molecular radius or hydrophobicity of the amino acid at position 78. A78G-HERG yielded the mature protein, whereas A78V-HERG, similarly to A78T-HERG, did not. The former finding excludes the possibility that deletion of the methyl group by substitution for alanine destabilizes the A78T-HERG protein. The latter finding suggests that the larger molecular radius but not hydrophilicity of the threonine residue destabilizes A78T-HERG.